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Dense plasma microfield nonuniformity
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Plasma microfield-constrained-average quantities arise in a variety of applications including the ion quad-
rupole effect, the ion motion problem, and autoionizing processes. We critically compare several methods for
computing such quantities in the context of microfield-constrained field gradients, which are used for describ-
ing the ion quadrupole effect, a source of spectral line asymmetry. Specifically, we show that one adjustable
parameter exponential approximatiGhPEX)-like theory is divergent and compare existing nearest-neighbor
models, APEX, and Monte Carlo results. Moreover, we have performed molecular-dynamics simulations to
assess the accuracy of these previous results. Our results indicate that APEX calculations of this particular
constrained average are quite accurate except at large field values, which are unimportant for line shapes.
Interestingly, nearest-neighbor results are quite accurate for certain field gradients and not for others.
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. INTRODUCTION where k?=4mn.e?/kgT, Z is the effective ion charge, and

Atomic emission and absorption tral line sh e is the electron number density.
OMmIC emission and absorption Spectral in€ Sapes are™ 1o ¢onstrained average at a radiator of chatgman be

useful as density and temperature diagnostics in plagijas

Often the effects of all of the perturbing plasma ions on anexpressed o)

atom can be treated as a uniform plasma electric microfield

[2]. For dense plasmas, however, microfield nonuniformities <‘7X,-Ei>f:nif dro Ei(r)g(r;e), @
due to electric-field gradients must be considered since they N o
contribute to line asymmetrig8—6]. This effect can be for- Wheredy Ei=2_,d, Ei(ry) for N total perturbing ions and
mulated in terms of the microfield-constrained average of the o

components of the spatial derivative of the microfield. Theo?XEi(r)=Ze—3[< 3i_21 (1+KI‘)—K2Xin]. 3)
present paper presents a critical evaluation of this con-"! r

strained average. This study also serves as an evaluation H{a previous wor5], Eq. (3) was approximated by neglect-

an important approximation to the microfield-constrained ra—Irlg terms proportional ta2. These terms are of the order of

dial distribution functiong(r; €). This quantity is used in the {he charge density at the radiator due to the perturbing-ion
evaluation of constrained averages and gives the average P&&reening clouds. In the present work, these terms are re-
turber distribution at around a radiator experiencing a field t5ined for consistency with the MD simulations.

€. These constrained averages are also applicable to the cal- Kjlcreaseet al. [5] showed that
culation of the time derivative of the electric microfigld 8] L N
and of microfield effects on the continuum wave functions -
involved in autoionizing process¢s]. g(rie)= @f (2m)3° QNG @
In this paper we examine the average field-gradient theory
of Kilcrease etal. [5] and compare it with accurate Where
molecular-dynamics(MD) simulations. These results are Ny — _ ~
compared with unscreened and screened nearest-neighbor g(r,)\i (L/n;) {6GL$1/SGA-E(1) }. ®
(NN) models. We also discuss the divergence of the theoryere G[¢]:|nQ()\):|n<ékE> is the microfield generating
of Demuraet al. [6,8]. functional, Q(e) is the microfield probability function, and
n; is the ion number density. This relation is exact and shows
Il. THEORY that the constrained average is derivable from a functional

The constrained quantity, E;). is the ensemble average derivative of the micro.field.generating functio.nal. Therefore,
. . Ny L we can use an approximation for the generating function that
of all plasma ion configurations that produce a microfield

tthe ion i tion. E. is the derivati f theth will lead to a corresponding approximation to the con-
at the 1on in question, & 1S the derivative ot theth com- gy aineq average. Use of the adjustable parameter exponential

ponent of the plasma microfield in the direction at the ion,  approximation(APEX) microfield generating function#lL0]
assuming thez axis is in the direction of the plasma mi- |eads to[5,11]

crofield e. An ion quasiparticle model based on Debye-

Huckel (DH) pairwise interactions between identical ions is J(r;N)=g(r)eME ™), (6)
assumed with the interaction energy between ib@sd | . . . , .
given by 9y J whereE* (r) is the single-particle APEX screened field with

the inverse screening length given by the adjustable screen-
Vii(ri,rj) = [(Ze)zllri—rj|] e «Iri=ril, (1)  ing parametew andg(r) is the radial distribution function.
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This approximation t@(r;\) leads to a constrained average It is worth noting that this gives a prescription for computing
that obeys the expected normalization condit{ay.=1, a  9(r,€). For a given field value=E(2), thesingleparticle is
consequence of E@6) satisifying the zeroth moment condi- located atz. The field gradients are

tion discussed in Refll].

Another approximation to the constrained average is Zng e 1.,
given by Demureet al. [6], IEA2) =~ —g=e | It wzt 54727,
G(r;N)=g(r) [E(n)/E*(n)]e™ =, v .
_ _ _ _ _ IEx(2)=—5 e 41+ k2), (10)
where E(r) is the single-particle DH screened field. This z

approximation arises from the use of an “effective” radial

distribution functionG(r) defined by the APEX local-field where all electric fields are normalized bir2 and electric-
constraintE* (r)G(r)=E(r)g(r) [10]. However,G(r) is field derivatives are normalized y/r3, where the electron
nota radial distribution functio12] and occurs as the result gsphere radius .= (3/4mn)"3. These equations can be im-

of renormalizing the Bargnggr-MSzer series expansion opjicitly used to approximate the field gradient for a given
G(A) interms of an effective fiel@* (r). This renormaliza-  value of the electric field in the high-field limit.

tion leads, in a natural way, to the APEX second moment plasma screening can be neglected if the perturber ap-
condition as well as the local-field constraint and it is there-proaches the radiator at a distance much less than the screen-

fore not necessary to define an effective radial dlStrIbUthﬂng |ength[5] In this case the above equations take the sim-
function. The use of5(r) in Eq. (7) leads to a constrained pler forms of

average that violates the normalization condit{éh.=1, as

seen by examining the radial part )., viz., 5,ENS= (21NZ) 2, AENS= _1aENS (17

47 E(r) .
V2 drr? E* (1) g(r)jo(AE* (1)), (8)  The superscript “NS” refers to the no-screening case.
where the radial integration is over the system volumé&or lll. MOLECULAR-DYNAMICS IMPLEMENTATION

larger, g(r) and the spherical Bessel functigp(AE*(r))
go to unity but the ratide(r)/E* (r) depends on the adjust-
able APEX screening parameter and is proportional to
exd(a—«)r]. For a/«>1, the ratio and the normalization
diverge exponentially, while fow/x<<1 the ratio goes to
zero exponentially and the normalization is less than on
For a= «k the normalization condition is satisfied, but this

corresponds to the independent particle model of Jeyes.

[4] and would not be expected to take proper account 0]:I'ime propagation was implemented by numerically integrat-

perturber ion-ion interactions. As an example considerapurgIg the coqpled equatlon.s of motion using the velqcny-
Ar*17 plasma at temperatureksT=800 eV with erlet algorithm[14]. The time stepAt was chosen relative
gT=

Ne=1x10% 1x10%4 and 1x 10%® cm~3 and find o/ k= to the plasma frequenay; such thatw;At=0.017 and 0.054

— 4 5 -3 H
2.7, 2.3, and 1.9, respectively. The normalizatiorg(f; €) for ne=10* and 16°cm >, respectively.

. L ~ . o Since it is necessary to perform MD simulations with a
using the approximation of ECW) for g(r,)\_) will _dlverge finite number of particles, results obtained are not performed
for all three cases. Calculation ¢8,E,). using this theory

will lead to divergence fow/x>2 due to an additional ex- in the thermodynamic limit and are subject to boundary ef-

ponential factor from the field derivative. Due to these prob-feCtS' These effects, statistical ensemble dependence and sys-

lems with the normalizability, Eq.7) is generally not useful tem size, were |n\./est|gated'by varying the partlcle'number n
: . both microcanonical and isokinetic implementations. The
for evaluation of constrained averages. microcanonical ensemble was sampled by accurately solvin
Knowledge of{J,E,). and(J,E,). suffices to determine P y Y 9

all field-gradient quantities sinc&.E=4mp. When the the exact equations of motion. Such a procedure exactly con-

lasma microfield at the radiator is small. the term oro ro_serves energy in the limit that the time step approaches zero.
P o ) , the term prop Sampling from the isokinetic ensemble was achieved by a
tional to = in Eq. (3) results m(aXiEi)e remaining finite as

) i1/ ) standard velocity scaling procedure, which ensures that the
€—0, in contrast to Ref[5]. Fori#|, (dxEi). is aways  velocity distribution is consistent with the desired tempera-
zero. On the other hand, when the plasma microfield at &re at each time stefi3].

radiator is very large, the field is dominated by a single per- Convergence of the MD with respect to particle number
turber, the nearest neighbor. This suggests a simple modelas tested with microfield calculations at=10°* cm™3.
based on the nearest neighbor alone, which is valid for larg&he results, performed in the isokinetic ensemble, are shown
field values. Locating the origin on the radiator and takingin Fig. 1 for N=54 and N=686 particles. Qualitatively,
the perturber to be on the positizeaxis, the magnitude of there is good agreement between the various calculations. An
the electric field at the radiator is then error parameter is defined as the rms value of

MD calculations have been performed with various par-
ticle numbers in both the microcanonical and isokinetic en-
sembles. Periodic boundary conditions were used in all cases
with the minimum image cell convention employed in com-

eputing the forced13]. This convention, in contrast to the
familiar Ewald procedure, is applicable as a result of the
short-range nature of the interaction potential of ED).

E(2)=(Zre/z?) e "1+ x2). ©) [Pese(€) = Pn(€)]/Pggel €) X 100, (12
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FIG. 1. Microfield distributions foN=54 andN=686 particles. The
simulation was carried out in the isokinetic ensemble at 800 eV and
ne=10? cm 3 for Z=17. Note thatP(e)=47€e’Q(e€). The electric field
€ is measured in units af/r2.

whereN=54, 250, and 432. This parameter is a measure of

the error relative to the most accurate simulation performed.

The rms errors over the range:O_G were found to be FIG. 2. Field gradient$d,E,), for N=54, 250, and 686 particles in the
3.4% forN=54. 1.1% forN=250. and 0.9% folN=432 isokinetic and microcanonical ensembles. Sensitivity to the number of par-

o . ... ficles is much greater for the field gradients than for the microfield distribu-
As such, we feel that thl =250 case is adequate for d|st|n-_ tion. Plasma conditions are the same as in Fig. 1. Field gradients are mea-

gm?hilgg among the various analytical models for mi- sured in units of/r3 and the electric field is measured in units a#/r2.
crorields.

The ensemble dependence was explored with the fieldormed in the canonical ensemble, are shown and are in good
gradient calculations for various numbers of particles. Sinc@greement with our MD results. The interesting region is
the MD simulations are performed in the laboratory frame SPectroscopically belowe=3 due to the location of the
the field gradients were rotated such thatateis lies in the ~Maximum of the microfield probability functiofsee Fig. 1

direction of the plasma microfiele The results are shown in !N this region, there is good agreement between APEX and
Fig. 2 for no=10? cm~3. The MD field-gradient calcula- the MD simulation with poorer agreement at larger field val-

ues. On the other hand, the NN models {aiE,). are in

tions appear more sensitive to particle number than the mi: . .
crofield calculations. Furthermore, the microcanonical an loser agreement_wnh the MD re_sults for larger field values
: ' han for smaller field values, while the NN models for the

isokinetic ensembles have a rms difference of 1.0% over thgﬁ E,). are in poor agreement with the MD results at all
X=X/€

rangee=0-6 forN=686 with a maximum difference in that | valyes studied. In addition screening is relatively unim-
range of 2.4%. Thus the results are shown to be relatlvel)bortant in the NN models fofd,E,). at this temperature and
insensitive to the choice of ensemble. density.
Figure 4 shows the results far,=10%° cm 3. For this
IV. RESULTS AND CONCLUSIONS case, the MD temperature was computed to be 804 eV with a
. i i standard deviatioffluctuation) of 11 eV. The errors associ-

A comparison between field gradients computed byated with a finite trajectory length were found to be 2.3% for
APEX, NN models, and MD simulations has been carried(axEx>e and 0.3% for(d,E,).. At this higher density, there
out for a pure AF'’ plasma at 800 eV ah.=10** and s good agreement between APEX and the MD simulation
10%° cm™2. The MD simulation was performed in the micro- below e=2, which is the important region for line shapes
canonical ensemble with 686 particles. The microcanonicadiue to the peak of the microfield at=1.25. The NN models
temperature was determined by the relatiaiT=m(v?)/3. again show poor agreement with the MD results at the lower

Figure 3 shows the results fo,=10* cm™~3. The MD field values. At high field values, we see that {@;E,). the
temperature was computed to be 806 eV with a standardPEX, MD simulations and screened NN models are con-
deviation (fluctuation of 11 eV for these results. The error verging. For this case also, screening is unimportant in the
associated with a finite trajectory length in the MD simula-NN models for(d,E,)..
tion was estimated by fitting a smooth polynom(lurth or We have compared several theories of the field-
fifth orden through the data and computing the rms fluctua-constrained-average field gradient. We have demonstrated
tion about the smooth fit. The fluctuations were found to bethat the theory of Demurat al. is divergent and does not
0.8% for(d,E,). and 0.3% for(d,E,).. The Monte Carlo apply to field-constrained quantities in general. A straightfor-
(MC) calculations of Demurat al. [15] for (J,E,)., per- ward application of APEX5] indicates that for small field
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FIG. 3. Field gradient$d,E,). (all plots curving upwarfand(d,E,) .
(all plots curving downwargfor n,=10** cm° andT=2800 eV. Shown are FIG. 4. Same as Fig. 3, but with,=10% cm™3. No MC results were
results obtained from APEX calculation, the nearest-neighbor models, andvailable for this case. Units are the same as in Fig. 2.

the MD simulation(done in the microcanonical ensembl&he thin solid ) ) )
line is the MC result of Demurat al. Units are the same as in Fig. 2. context of field gradients, we have shown that simple NN

models are not accurate at either density for ¢{hgE,).
values the APEX method accurately gives the part ofcomponent and at low field values for both thgE,), and
g(r,e) sampled in the(d,Ey). and (J,E,). averages. At (4,E,). components, by comparison with the MD results.
larger field values the agreement between APEX and the MIThe latter result is expected since many-body effects domi-
simulation is not as good and a better theorydér,e) may  nate the microfield at low field values and a more sophisti-
be needed for applications that require accurate results aated NN is needeld6]. There does appear to be fairly good
these larger field values. The APEX approximation to theagreement between the screened NN model and the MD re-
field gradients appears, therefore, to be quite satisfactory faults, which suggests that the NN limit may be reached at
spectroscopic applications since the microfield peaks at relamaller field values fo¢d,E,). than the(4,E,). component.
tively low field values. A quantitative comparison with ex- However, this may simply be fortuitous agreement, and a
perimental line shapes requires a careful consideration afareful theoretical analysis, which would be beyond the
other effects that produce line asymmetries such as the quaeope of this Brief Report, is needed to ascertain which is the
dratic Stark effect and the presence of satellite lines. In thease.
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